新闻资讯
联系我们

手机:13610101789

联系人:任小姐

地址:广州市番禺区市桥街北桥路16号之一4楼4111室

行业新闻
广播系统供声方案
点击数:2279次  更新时间:2012-6-16
核心提示:根椐建筑物的功能、体型、空间高度及布局等因素,可分为 集中供声、分散供声和分区供声 三种供声方案。良好的公共广播工程应能有效地控制扬声器的声场分布和满足投射距离的声压级要求。
a)  集中供声

顾名思义是把一组扬声器集中安装在一个固定位置上的供声系统。对于舞台的剧场或多功能厅来说,扬声器组通常安装在靠近自然声源的舞台台口上方左右两侧( 三路扬声器系统可分为左中右三组安装 )如图2和图3所示。

由于声音来自舞台方向,与观众的视听方向一致,听感自然。为使全部观众区声场均匀,扬声器应置于较高的信置。为克服前几排观众区“头顶感”声像,可在台口两侧或台唇部位设置若干小功率辅助扬声器,利用哈斯效应解决前区观众声像一致的问题

图2 大型厅堂的集中供声系统

对四面均有观众区的大型体育馆或大型厅堂,扬声器系统通常以一种“声塔”形式的阵列组合吊挂在大厅中央。

利用扬声器指向特性即偏轴方向的声压随偏角增大而逐渐减少的特性和声压级随投射距离的增加按距离的平方减少的特性可声场达到互补的结果。如果扬声器位置得当,可使声场更为均匀。 如图4所示

集中供声的优点是声像一致,听感自然:扬声器之间的声波干扰小;声音清晰度高。缺点是对于形状复杂,又有多层楼厅和眺台的厅堂,声场不易做得均匀;狭长的厅堂,由于投身距离远,后座观众区的声压级可能会偏低。为此,可利用强指向性的远投射扬声器增强后部观众区的声压级以及在眺台下面的声影区适当增设几个补声扬声器,增加这部分区域的直达声和声压级,抑制混响声的影响,提高声音的清晰度。

b)  分散式供声

对于无法采用集中供声的大型或狭长高度又不高(低于6米)或空间结构可分为几部分的大厅,以及对于难以获得好的语言清晰度的混响时间较长的大型礼堂,可采用分散式的供声。

分散式供声有两种形式:一种是以天花安装扬声器为供声单元的分散式供声,如图5所示。另一种是以小功率声柱或音箱(功率为25W~60W)为供声单元的分散式供声系统,如图5所示。

分散式供声系统能获得均匀的声场;并由于扬声器与听众之间的距离很近,可保持较高的直达声与混响声的声能比。所以在混响时间较长的条件下也能获得较高的清晰度,并且不容易发生回声问题。

吊顶天花板扬声器大都是口径为130mm~160mm(5寸~6.5寸)的 3W~6W 中频纸盆扬声器,最大声压级为90~93 db,1m,适合播放语言节目,高音与低音性能较差。

图5 大礼统堂中的分散式系

天花板扬声器的布局设计应根据服务区域的体形,空间设计,环境噪声和扬声器的最大声压级等参数综合考虑。图6是扬声器的指向角 α=90  圆锥形方向图的服务区计算图。单元个天花板扬声器的声所覆盖S1为:

S1=0.785[2(H-1.5)tgα]的平方     (平方米)

当α=90时,(1)式可简化为:

S1=0.785 [α(H-1.5)] 的平方     (平方米)

如果需要覆盖的面积为S,按80%的覆盖分布,需要的扬声器总数量N为:

N=S/S1

上式中:S为声场覆盖的总面积。单位为m

S1为单个扬声器的声场覆盖面积,单位为m

H为天花离地面的高度,单位为m

小功率天花板扬声器常用于空间高度H不大于5~6m的会场或公共场所,例如在一个高度 H= 4m 环境噪声为 45dB(A)的会场采用天花板扬声器供分散式供声时,可选用灵敏度为86dB,1W,1m 左右的,额定功率为 3W 的天花板扬声器。为使听众能获得良好的清晰度,要求听众处的直达声声压级高于环境噪声声压级 25dB,即 45dB + 25dB=70dB。3W 扬声器在离扬声器口 1m 处的最大声压级为 86+4.8dB ( 3W 功率分为 4.8dB)=90.8dB,1m。2.5m 高度 (H-1.5) 的距离衰减为 -8dB 因此到达听众耳朵高度的最高声压级为90.8 - 8 = 82.2 dB,可满足良好清晰度的要求。根据图6(a)还可算出天花扬声器之间的间隔距离为:2(H-1.5)=5m。

使用小型声柱的分散式系统也可按上例类似的方法计算其间隔的距离和声压级等级参数。图7是声压级距离衰减的计算曲线。图中横坐标为离声源端口的距离,

纵坐标为声压级的相对衰减速dB

为改善视听感觉,在礼堂舞台上可设置一个目标扬声器,因为该扬声器没有经过延时,所以容量使听众认定为声源。为补偿前后各扬声器发出的声音能够同时到达各听众位置,系统中还应设不如图8所示的延时单元。延迟时间T的计算如下:

式中:D为观众离舞台声源的距离与最近扬声器声源的距离差,单位为m。

分散式供声的最大优点是声场均匀,直达声与混响声的声能比高,它的最大缺点是视听感觉不一致和多声源之间的声音干扰较大,影响声音清晰度。采用小功率高密度低声压的分散式供声可在混响时间较长的特大型会场中获得较好的语言可信度。

c)  分区式供声

对于狭长型的礼堂,集中供声扬声器投射到后面观众区的声压级会偏低,具有较深楼台和眺台的大型剧场,由于楼台和眺台的遮挡,使主场扬声器的直达声无法抵达,造成楼台和眺台下面的“声影”区。为此必须在礼堂的中、后部及楼台下面的“声影”区内布设若干个补声扬声器来提高这些观众区的声压级和直达声,如图9所示。这种扬声器的布局称为分区式供声。

在分区式供声系统中,由于主扬声器与补声扬声器之间的距离较大,两个声源到达听众位置的相对延时较大,如不经延时处理,到达中、后部观众区的声音会产生两重声效果,影响这部分观众区的声音清晰度,为防止这种观象发生,可在补声扬声器的信号通道中插入一个延时单元使两组扬声器的声音能够同时到达听众区。为保证声像定位效果,要求补声扬声器的声压级低于主扬声器的声压级。

分区式供声的扬声器系统如果设计和调试不当,很容易产生声波干扰,影响系统的清晰度。

上述三种供声方案各有优缺点,必须因地制宜使用。为保证系统声像感觉一致,音质清晰自然,应首选先考虑集中供声方案。

d)  室内扬声器的布置

扬声器系统内置的合理与否,直接关系到整个系统的音响效果,扬声器的布置一般应遵循以下原则:

(1)  使听众区的声场尽可能达到均匀一般:

(2)  视听方向一致,声音听感自然;

(3)  有利于克服声反馈,提高传声增益;

(4)  扬声器的覆盖角应能覆盖全部听众

(5)  听众区的声压级应能满足总技术条件要求;

(6)  各扬声器发出的声音到达听众区各点的时间差应小于5~30ms

(7)  便于安装、调试和维护。

(五)、系统设计中必须考虑的几个技术参数

包括:传声增益、语言清晰度、最大升压级。

1)传声增益

工程业主也许首先会问扩声系统能开到多响?用什么技术参数来衡量呢?这个问题在欧美各国用声音增益来表达(EASE或其他声学设计软件都采用此参数)。在我国和原苏联采用传声增益来表达。

扩声系统的传声增益( 或声音增益 )受声反馈因素限制,不能开到扬声器能够达到的最大声压级。图10是一个简单的室外扩声系统产生声反馈的原理图。

扩声系统的接通时,逐渐增大系统放大器的增益,当增益递增大到某一位置时,扬声器放出的部分声音通过空间传播回收到话筒输入端,此时话筒输出端产生一个信号,其振幅大小等于或大于原输入信号的一个周期或是它的整数倍时,这个过程可以自己维持下去,即不需要外面的输入信号也会产生输出,系统进入反馈状态(产生系统啸叫)。扩声系统进入啸叫的临界状态时,虽然还示听到刺耳的啸叫声,但系统的频率特性出现极不规则的变化,声音发生很大畸变。要使系统正常运行,系统的增益应留有 6dB 的余量,使它远离系统啸叫(系统自激)的临界状态。于是我们可得到传声增益的定义为:

传声增益:扩声系统达到最高可用增益时(临界增益减去6dB增益余量),在指定的各听众位置上测得的平均声压级与话筒处声压级的dB数差值。

声音增益:系统打开并增大到最高可用增益时,在指定的各听众位置上测得的平均声压级(dB)减去系统关闭时在相同听众位置上测得的平均声压级dB的差值。

上述两种定义表达同一个声反馈物理现象,它们的区别仅在于测量方法的不同和表达方法不同而已。声音增益的概念明确,容量理解,说明观众区使用扩声系统和不使用扩声系统可获得提高的声压级数值。但在实际测量中,如果测量点离原始声源较远,环境噪声又较大时,很难正确测出系统关闭时声源到达测点的声压级。传声增益表示观众区的平均的平均声压级与话筒处声声压级的差值(dB),如果我们知道了话筒处的声压,那么马上就可算出观众区的平均声压级了,例如;通常演讲人的嘴巴离话筒0.5m时,话筒处的声压级约为70dB,如果系统的传声增益为-6dB,那么可求得观众区的平均声压级为70dB-6dB=64dB,如果还要提高观众区的声压级,则可把话筒靠近讲话人的嘴巴,例如把这个距离从0.5m减小到0.125m(125mm)那么话筒处的声压级可提高到82dB(距离缩短4倍声压级可提高12dB)此时观众区的平均声压级也可提高到76dB,注意:声音增益是+dB数值;传声增益则是-dB的数值,实际能做到最高的传声增益为-6dB。

系统最大可用的声音增益 Gmax可用下式计算(请参看图10):

Gmax=20lgD0-20lgDS+20lgD2-b (dB)

式中:D0为讲话人到听众间的距离,单位为m;

Ds讲话人到话筒间的距离,单位为m;

D1为扬声器到话筒的距离, 单位为m;

D2为扬声器到听众之间的距离, 单位为m;

从上式中可得出以下结论:

1、  声音增益或传声增益不依赖讲话人的声压级;

2、  缩短讲话人与话筒之间的距离DS,可有效提高声音增益;

3、  增加话筒和扬声器之间的距离D1,可增加声音增益;

4、  利用强指向性和指向性优良的扬声器系统可提高传声增益。

沿着指向性扬声器-6dB方向角设置一个全向话筒时,传到话筒处的声压级可比全向扬声器减少6dB,这个结果可直接加到系统的声音增益中。

心形话筒不是可提高更多的声音增益吗?在实际工作过多的依赖指向性话筒和指向性扬声器来提高系统的声音增益是不明智的,原因是话筒和扬声器的指向特性是随频率的变化而变化的,在低频时接近无指向性特性。因此大多数设计师利用它们的指向特性可获得的声音增益提高不大于6dB。

室内扩声系统的声音增益除受式(4)条件限制和话筒、扬声器指向物性的影响外,还受房间建声条件。此外在电声系统中可采用反馈自动抑制器把反射最强烈的频率和振幅最大的房间共振频率吸收掉,但是吸收的频率点不超过5~6个点频。

2)声音清晰度

声音清晰度是扩声系统的重要技术指标。语言清晰度是评价系统可懂度的一种方法。影响语言清晰度的主要因素有:

1、  声压级与背景噪声声压级的比率

良好的声音清晰度要求语言声压级大于背景噪声声压级25dB。如果这个比例在10~15dB时,清晰度指标会相应降低,但还是在允许范围。背景噪声来源于室内外的环境噪声、空调通风噪声和人群发出的噪声等。

2、  混响时间

讲话速度中等的人,每秒种可以出3~4个音节,因此 1.5秒更短一些的混响时间,对语言清晰度的影响不大。

3、直达声与混响时间的声能比

混响时间超过1.5秒时,语言清晰度是混响时间和直达声与混响声声能比的函数关系。如图13所示。

辅音清晰度损失与混响时间和直达声与混响声比率的关系曲线

3)最大声压级

扩声系统在最高可用增益状态下,馈入扬声器系统的电压相当于设计使用功率(或所声器额定功率)的电压值,在系统要求的频率范围内,各测量点上测出的各个1/3倍频程带内的声压级的平均值.然后再加上6dB的信号峰值因子就可得到最大的声压级。测试信号源为粉红色噪声+1/3倍频程带通滤波器。

定义:厅堂内声场稳态时的最大声压级

以技术参数说明系统最大声压级的压潜力。为防止测试时间过长损坏扬声器系统,扬声器系统的馈入功率可1/n取(n=2~10)。
成都丝足按摩
移动电话:13610101789 (任小姐)  版权所有:声迪佳    地址:广州市番禺区市桥街北桥路16号之一4楼4111室 技术支持:广州网站建设